Abstract

Dehydrodimers of hydroxycinnamates play an important role in the cross-linking of plant cell walls. An aqueous solution of quaternary ammonium salts with a long aliphatic chain is known to spontaneously organize itself into micelles with the ionic part at the outer sphere. It is shown that regioisomeric ferulic acid dehydrodimers can be obtained in one step from trans-ferulic acid after attachment to these micelles and using the biomimetic peroxidase-H2O2 system. The surfactant hexadecyltrimethylammonium hydroxide yielded trans-4-(4-hydroxy-3-methoxybenzylidene)-2-(4-hydroxy-3-methoxyphenyl)-5-oxotetrahydrofuran-3-carboxylic acid (25%), (E,E)-4,4'-dihydroxy-5,5'-dimethoxy-3,3'-bicinnamic acid (21%), and trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-2,3-dihydrobenzofuran-3-carboxylic acid (14%), whereas the surfactant tetradecyltrimethylammonium bromide gave 4-cis, 8-cis-bis(4-hydroxy-3-methoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane-2,6-dione (18%) as the main product. The use of micelles appears to be not only a new way to synthesize regioisomeric ferulic acid dehydrodimers but may also help to understand the regiospecificity of dimeric hydroxycinnamate formation in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call