Abstract

Alkaline hydrolysis liberated ferulic and diferulic acid from polysaccharides of the Avena coleoptile (Avena sativa L. cv. Victory I) cell walls. The amount of the two phenolic acids bound to cell walls increased substantially at day 4–5 after sowing, when the growth rate of the coleoptile started to decrease. The level of these acids was almost constant from the tip to base in 3‐day‐old coleoptiles, but increased toward the basal zone in 4‐ and 5‐day‐old ones. The ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age and zone. An increase in the amount of ferulic and diferulic acids bound to cell wall polysaccharides correlated with a decrease in extensibility and with an increase in minimum stress‐relaxation time and relaxation rate of the cell wall. The level of lignin in the cellulose fraction increased as coleoptiles aged, but this increase did not correlate with changes in mechanical properties of the cell walls. These results suggest that ferulic acid, ester‐linked to cell wall polysaccharides, is oxidized to give diferulic acid, which makes the cell wall mechanically rigid by cross‐linking matrix polysaccharides and results in limited cell extension growth. In addition, it is probable that the step of feruloylation of cell wall polysaccharides is rate‐limiting in the formation of in‐termolecular bridges by diferulic acid in Avena coleoptile cell walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call