Abstract
Biological homochirality is a signature of life. Supramolecular polymerization is effective to achieve high hierarchical homochirality in nature, but has not been well‐explored. Herein, we report regioselective and homochiral supramolecular polymerization of chiral nanotadpole aggregates made of either synthetic helical poly(phenylacetylene)s or chirality‐amplified co‐assembly of chiral and achiral poly(phenylacetylene)s. The twisted nanotadpole aggregates with high screw‐sense preference polymerized as monomers (aggremers) into supramolecular chains in a head‐to‐tail regioselective and stepwise manner. Supramolecular copolymerization of enantiomeric aggremers favored formation of homochiral hierarchical supramolecular structures as visualized by TEM. Chiral hexagonal columnar mesophase of aggremers was responsive for the stereoselectivity. The work opens a gate to controllably and effectively construct functional chiral supramolecular materials and deepens the understanding of hierarchical biological homochirality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have