Abstract

The knee meniscus exhibits extensive spatial variations in native healing capacity, biochemical composition, and cell morphology that suggest the existence of distinct phenotypes for meniscus cells. Constitutive gene expression levels of appropriate extracellular matrix proteins may serve as useful molecular markers of cellular phenotypes; however, relatively little is known of variations in the gene expression for meniscus cells of different regions of the tissue. The objective of the present study was to evaluate constitutive differences between radial inner and outer regions in gene expression for extracellular matrix proteins relevant to the meniscus. A secondary objective was to determine if these region-specific differences in gene expression are maintained after periods of monolayer culture. The innermost regions of the meniscus were found to constitutively express higher mRNA levels for proteins highly expressed in articular cartilage, including aggrecan, type II collagen, and NOS2. In contrast, the outer meniscus was found to contain higher gene expression for proteins associated with fibrous tissues including type I collagen, and the proteases MMP2 and MMP3. Isolated inner and outer meniscus cells maintained these region-specific gene expression patterns for collagens and proteoglycans during short-term monolayer culture. The results provide new information that suggests the utility of constitutive gene expression levels as molecular markers to distinguish tissue and cells of the inner and outer meniscus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.