Abstract

This study explores the spatiotemporal variability of the onset, end, and duration of the rainy season in Senegal. These phenological parameters, crucial for agricultural planning in West Africa, exhibit high interannual and spatial variability linked to precipitation. The objective is to detect and spatially classify these indices across Senegal using different approaches. Daily precipitation data and ERA5 reanalyses from 1981 to 2018 were utilized. The employed method enables the detection of key dates. Subsequently, the Kohonen algorithm spatially classifies these indices on topological maps. The results indicate a meridional gradient of the onset, progressively later from the southeast to the northwest, whereas the end follows a north–south gradient. The duration varies from 45 days in the north to 150 days in the south. The use of self-organizing maps allows for classifying the onset, end, and duration of the season into four zones for the onset and end, and three zones for the duration of the season. They highlight the interannual irregularity of transitions, with both early and late years. The dynamic analysis underscores the complex influence of atmospheric circulation fields, notably emphasizing the importance of low-level monsoon flux. These findings have tangible implications for improving seasonal forecasts and agricultural activity planning in Senegal. They provide information on the onset, end, and duration classes for each specific zone, which can be valuable for planning crops adapted to each region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call