Abstract

Dune growth and post-storm recovery of foredune systems is predominantly determined by the aeolian sand transport through the beach-dune interface. Potential sand transport rates, estimated with empirical transport equations using regionally representative wind conditions, are generally too high. This positive bias might be, at least partly, due to the effect of the beach and foredune topography on the regional airflow. Here, we investigate the relation between local (on the beach) and regional wind velocities and direction in front of the high (∼22 m) and steep (∼1:2.5) foredune partially vegetated with Marram grass at Egmond aan Zee, The Netherlands based on a dataset with a large variety in wind speeds spanning over all onshore wind directions. We observed that local 10-minute averaged wind speed and direction can differ from the regional wind conditions (here measured 15 km away from the study site) depending on the regional approach angle of the wind. The ratio of local over regional wind speed is smallest (∼0.39) when the wind direction is dune-normal. This ratio increases with increasing obliquity towards almost 1 for alongshore winds. Wind steering only happens at the dune foot and is the largest (∼13°) with oblique approaching winds of 40° from the dune normal. Perpendicular and nearly alongshore winds do not show any steering near the dune foot. The use of local rather than regional wind conditions in a potential transport equation reduces the predicted annual supply from 86 to 32 m3/m/y, substantially closer to the measured deposition of 15 m3/m/y. The drop in velocity was more important to the reduction in predicted supply than the alongshore steering.

Highlights

  • Foredunes protect a large portion of the worlds coastal areas from marine flooding during severe storms

  • Regional wind speeds at IJmuiden transformed to 0.9 m height ranged between 0.4 and 18.2 m/s, and were compared with the local wind speeds measured at the beach in Egmond aan Zee with speed ranging from 1.0 to 14.3 m/s (Fig 6)

  • Our work is in line with the idea, described in [27], that flow separation occurs just in front of the foredune and part of the wind is deflected into a more alongshore direction at the dune foot

Read more

Summary

Introduction

Foredunes protect a large portion of the worlds coastal areas from marine flooding during severe storms. Additional to safety, foredunes contain important habitats for coastal flora and fauna and the dynamics of foredunes can sustain high biodiversity in the entire dune system. Duneward aeolian transport from the beach is essential for the growth, dynamics and poststorm recovery of foredune systems [1, 2]. Used aeolian sand transport models compute the sand transport rate with the shear velocity to the third power [3,4,5,6,7,8,9,10], where the shear velocity is spatially constant and based on time-averaged wind velocity measurements.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call