Abstract

The lack of interpretability remains a barrier to adopting deep neural networks across many safety-critical domains. Tree regularization was recently proposed to encourage a deep neural network's decisions to resemble those of a globally compact, axis-aligned decision tree. However, it is often unreasonable to expect a single tree to predict well across all possible inputs. In practice, doing so could lead to neither interpretable nor performant optima. To address this issue, we propose regional tree regularization – a method that encourages a deep model to be well-approximated by several separate decision trees specific to predefined regions of the input space. Across many datasets, including two healthcare applications, we show our approach delivers simpler explanations than other regularization schemes without compromising accuracy. Specifically, our regional regularizer finds many more “desirable” optima compared to global analogues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.