Abstract

Amide hydrogen exchange rates are highly sensitive to protein structure and may, therefore, be used to detect and characterize structural changes in proteins. Specific regions within folded proteins undergoing structural change can often be identified if localized amide hydrogen exchange rates are determined by nuclear magnetic resonance (NMR). The ability to measure localized amide hydrogen exchange rates by proteolytic fragmentation followed by mass spectrometric analysis opens the possibility to also identify localized structural changes in proteins by mass spectrometry. If successful, this approach offers considerable advantage over NMR in speed, sensitivity, protein solubility, and ability to study large proteins. This possibility has been investigated by determining the amide hydrogen exchange rates in oxidized and reduced cytochrome c by protein fragmentation/mass spectrometry. The fundamental difference in these forms of cytochrome c is the oxidation state of the iron, which other studies have shown results in only minor structural changes in the protein. In the present study, the largest differences in hydrogen exchange rates were found for peptide amide hydrogens located distant from the Nand C-termini, indicating that the structure in these regions is most affected by the oxidation state of the iron. These results are consistent with previous studies of oxidized and reduced cytochrome c, suggesting that hydrogen exchange and mass spectrometry may be generally useful for locating subtle changes in protein structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call