Abstract

AbstractThis study evaluates examples of hydrothermal dolomitization in the Middle Cambrian Cathedral Formation of the Western Canadian Sedimentary Basin. Kilometer-scale dolomite bodies within the Cathedral Formation carbonate platform are composed of replacement dolomite (RD), with saddle dolomite-cemented (SDC) breccias occurring along faults. These are overlain by the Stephen Formation (Burgess Shale equivalent) shale. RD is crosscut by low-amplitude stylolites cemented by SDC, indicating that dolomitization occurred at very shallow depths (<1 km) during the Middle Cambrian. Clumped isotope data from RD and SDC indicate that dolomitizing fluid temperatures were >230 °C, which demonstrates that dolomitization occurred from hydrothermal fluids. Assuming a geothermal gradient of 40 °C/km, due to rift-related basin extension, fluids likely convected along faults that extended to ∼6 km depth. The negative cerium anomalies of RD indicate that seawater was involved in the earliest phases of replacement dolomitization. 84Kr/36Ar and 132Xe/36Ar data are consistent with serpentinite-derived fluids, which became more dominant during later phases of replacement dolomitization/SDC precipitation. The elevated 87Sr/86Sr of dolomite phases, and its co-occurrence with authigenic quartz and albite, likely reflects fluid interaction with K-feldspar in the underlying Gog Group before ascending faults to regionally dolomitize the Cathedral Formation. In summary, these results demonstrate the important role of a basal clastic aquifer in regional-scale fluid circulation during hydrothermal dolomitization. Furthermore, the presence of the Stephen Formation shale above the platform facilitated the build-up of fluid pressure during the final phase of dolomitization, leading to the formation of saddle dolomite-cemented breccias at much shallower depths than previously realized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call