Abstract

Using a near infrared (NIR) imaging device, we tested the hypothesis that regional differences in oxygen status could be detected in the gastrocnemius muscle during exercise and recovery. Six healthy subjects performed the standing plantar flexion exercises for 2 min; the frequency was one contraction per second. The NIR imaging device was placed over the medial head of the right gastrocnemius muscle and the signals from two optical sensors situated on the middle proximal and middle distal portions were used. The NIR-O(2) saturation (difference between deoxygenated and oxygenated Hb signals) and NIR-blood volume (sum of the oxygenated and deoxygenated Hb signals) were calculated in optical density units. Plantar flexion resulted in more deoxygenation during exercise and more reoxygenation during recovery in the distal portion compared with the proximal portion. The changes in NIR-O(2) between rest and a 2 min exercise, and between a 2 min exercise and a 3 min recovery were 0.11 and -0.23, respectively, in the distal portion, which were significantly larger than proximal values (0.05 and -0.10, p < 0.05). Plantar flexion resulted in lower NIR-blood volumes during exercise and greater recovery of blood after exercise in the distal portion compared with the proximal portion. The changes in NIR blood volume between rest and a 2 min exercise and between a 2 min exercise and a 3 min recovery were -0.19 and 0.31, respectively, in the distal portion, significantly larger than proximal values (-0.07 and 0.12, p < 0.05 for all comparisons). These findings indicate that the distal portion of the medial gastrocnemius had larger changes in NIR-O(2) saturation and NIR-blood volume than the proximal portion had. This is consistent with the distal portion having a greater impairment of blood flow possibly because of the higher intramuscular pressure during exercise. (1) regional differences in oxygen status in the gastrocnemius muscle were detected with exercise, with the distal portion having greater NIR-O(2) saturation and NIR-blood volume changes, and (2) the NIR imaging device might be a useful method to detect the regional differences of oxygen status in the muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.