Abstract
Large uncertainties in terrestrial carbon stocks and sequestration predictions result from insufficient regional data characterizing forest structure. This study uses satellite waveform lidar from ICESat to estimate regional forest structure in central New England, where each lidar waveform estimates fine-scale forest heterogeneity. ICESat is a global sampling satellite, but does not provide wall-to-wall coverage. Comprehensive, wall-to-wall ecosystem state characterization is achieved through spatial extrapolation using the random forest machine-learning algorithm. This forest description allows for effective initialization of individual-based terrestrial biosphere models making regional carbon flux predictions. Within 42/43.5 N and 73/71.5 W, aboveground carbon was estimated at 92.47 TgC or 45.66 MgC ha−1, and net carbon fluxes were estimated at 4.27 TgC yr−1 or 2.11 MgC ha−1 yr−1. This carbon sequestration potential was valued at 47% of fossil fuel emissions in eight central New England counties. In preparation for new lidar and hyperspectral satellites, linking satellite data and terrestrial biosphere models are crucial in improving estimates of carbon sequestration potential counteracting anthropogenic sources of carbon.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have