Abstract

While the degree of cerebellar tonsillar descent is considered the primary radiologic marker of Chiari malformation type I (CMI), biomechanical forces acting on the brain tissue in CMI subjects are less studied and poorly understood. In this study, regional brain tissue displacement and principal strains in 43 CMI subjects and 25 controls were quantified using a magnetic resonance imaging (MRI) methodology known as displacement encoding with stimulated echoes (DENSE). Measurements from MRI were obtained for seven different brain regions-the brainstem, cerebellum, cingulate gyrus, corpus callosum, frontal lobe, occipital lobe, and parietal lobe. Mean displacements in the cerebellum and brainstem were found to be 106 and 64% higher, respectively, for CMI subjects than controls (p < .001). Mean compression and extension strains in the cerebellum were 52 and 50% higher, respectively, in CMI subjects (p < .001). Brainstem mean extension strain was 41% higher in CMI subjects (p < .001), but no significant difference in compression strain was observed. The other brain structures revealed no significant differences between CMI and controls. These findings demonstrate that brain tissue displacement and strain in the cerebellum and brainstem might represent two new biomarkers to distinguish between CMI subjects and controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.