Abstract

AbstractThe total number of aftershocks increases with main shock magnitude, resulting in an overall well‐defined relationship. Observed variations from this trend prompt questions regarding influences of regional environment and individual main shock rupture characteristics. We investigate how aftershock productivity varies regionally and with main shock source parameters for large (Mw ≥ 7.0) circum‐Pacific megathrust earthquakes within the past 25 years, drawing on extant finite‐fault rupture models. Aftershock productivity is found to be higher for subduction zones of the western circum‐Pacific than for subduction zones in the eastern circum‐Pacific. This appears to be a manifestation of differences in faulting susceptibility between island arcs and continental arcs. Surprisingly, events with relatively large static stress drop tend to produce fewer aftershocks than comparable magnitude events with lower stress drop; however, for events with similar coseismic rupture area, aftershock productivity increases with stress drop and radiated energy, indicating a significant impact of source rupture process on productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.