Abstract
Facial Expression Recognition (FER) has gained significant importance in the research field of Affective Computing in different extents. As a part of the different dimensional thinking, aiming at improving the accuracy of the recognition system and reducing the computational load, region based FER is proposed in this paper. The system is an emotion identifying system among the basic emotions, through subject independent template matching based on gradient directions. The model designed is tested on the Enhanced Cohn-Kanade (CK+) dataset. Another important contribution of the work is using only eye (including eyebrows and the nose portion near eyes) and mouth regions in the emotion recognition. The emotion classification result is 94.3% (CK+ dataset) for 6-class FER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.