Abstract

In this study, a two-bed electrically heated regenerative thermal oxidizer (RTO) was used to test the thermal destruction and oxides of nitrogen (NOx) formation characteristics in burning airstreams that contain either N, N-dimethylformamide or dimethylformamide (DMF) mixed with methyl ethyl ketone (MEK). The RTO contained two 0.152 m × 0.14 m × 1 m (L × W times] H) beds, both packed with gravel particles with an average diameter of approximately 0.0111 m and a height of up to 1 m with a void fraction of 0.42 in the packed section. The thermal recovery efficiency (TRE) and the gas pressure drop over the beds were also studied. Experimental results reveal that, with a valve shifting time (t s) of 1.5 min, a superficial gas velocity (U g) of 0.39 m/sec (evaluated at an influent air temperature of around 30 °C) and preset maximum destruction temperatures (T S) of 750–950 °C, no NOx was present in the effluent gas from the RTO when it was loaded with DMF-free air. When only DMF was present in the influent air, the average destruction efficiencies exceeded 96%, and increased with the influent DMF concentration from 300 to 750 mg/N∙m3. The “NOx-N formation/DMF-N destruction” mass ratios were in the range 0.76–1.05, and decreased as the influent DMF concentration increased within the experimental range. When both DMF and MEK were present in the influent gas, the NOx formation ratio was almost the same and the DMF destruction efficiency increased with the influent MEK/DMF ratio from 150/300 to 4500/300 (mg/mg) and in the preset temperature range. The NOx formation ratios were in the range 0.75–0.96. The TRE decreased as U g increased but was invariant with T s. The Ergun equation was found to suffice in the estimation of the pressure drop when the gas flowed over the packing beds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call