Abstract

BackgroundPolyploid cells can be found in a wide evolutionary spectrum of organisms. These cells are assumed to be involved in tissue regeneration and resistance to stressors. Although the appearance of large multinucleated cells (LMCs) in long-term culture of bone marrow (BM) mesenchymal cells has been reported, the presence and characteristics of such cells in native BM and their putative role in BM reconstitution following injury have not been fully investigated.MethodsBM-derived LMCs were explored by time-lapse microscopy from the first hours post-isolation to assess their colony formation and plasticity. In addition, sub-lethally irradiated mice were killed every other day for four weeks to investigate the histopathological processes during BM regeneration. Moreover, LMCs from GFP transgenic mice were transplanted to BM-ablated recipients to evaluate their contribution to tissue reconstruction.ResultsBM-isolated LMCs produced mononucleated cells with characteristics of mesenchymal stromal cells. Time-series inspections of BM sections following irradiation revealed that LMCs are highly resistant to injury and originate mononucleated cells which reconstitute the tissue. The regeneration process was synchronized with a transient augmentation of adipocytes suggesting their contribution to tissue repair. Additionally, LMCs were found to be adiponectin positive linking the observations on multinucleation and adipogenesis to BM regeneration. Notably, transplantation of LMCs to myeloablated recipients could reconstitute both the hematopoietic system and BM stroma.ConclusionsA population of resistant multinucleated cells reside in the BM that serves as the common origin of stromal and hematopoietic lineages with a key role in tissue regeneration. Furthermore, this study underscores the contribution of adipocytes in BM reconstruction.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call