Abstract

The evaluation of human epidermal innervation and its impact by disease has largely focused on rigorous immunohistochemical counts of PGP 9.5 labelled axons. In this brief and preliminary report, we expand the repertoire of epidermal axon markers to include those with an influence on their regenerative plasticity. We studied human lower limb punch skin samples with tandem analyses of their mRNA content using qRT-PCR. Normal human subjects (n = 11) and two patients with newly diagnosed CIDP were sampled with the latter undergoing serial tandem biopsies before and after 3 months of immunotherapy. Controls expressed regeneration proteins within dermal and epidermal axons: GAP43 (growth associated protein 43), Shh (sonic hedgehog) and SCG (superior cervical ganglion-10; stathmin 2). Moreover, this expression accompanied intraepidermal nerve fiber density (IENF) within normal established values. CIDP patients had lower IENF but also expressed GAP43, Shh, and SCG. Tandem qRT-PCR identified confirmed the presence not only of these plasticity markers but of additional regeneration related mRNAs. CIDP patients had marked elevation of several mRNAs, with improvement following treatment. The findings support the concept of dynamic skin axon plasticity in humans is relevant toward consideration of newer therapeutic approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call