Abstract
All-synthetic molecular donor-acceptor complexes are designed, which are capable of counteracting the effect of photoinduced degradation of donor chromophores. Anionic gallium protoporphyrin IX (GaPP) and semiconducting carbon nanotube (CNT) are used as a model donor-acceptor complex, which is assembled using DNA oligonucleotides. The GaPP-DNA-CNT complex produces an anodic photocurrent in a photoelectrochemical cell, which steadily decays due to photo-oxidation. By modulating the chemical environment, we showed that the photodegraded chromophores may be dissociated from the complex, whereas the DNA-coated carbon nanotube acceptors are kept intact. Reassociation with fresh porphyrins leads to the full recovery of GaPP absorption and photocurrents. This strategy could form a basis for improving the light-harvesting performance of molecular donor-acceptor complexes and extending their operation lifetime.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have