Abstract
Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.
Highlights
Pine wilt disease (PWD), caused by the invasive pine wood nematode (PWN, Bursaphelencus xylophilus Nickle), which is endemic to North America, is a severe threat to native pine forests and has been spreading rapidly to other regions throughout the world [1,2,3,4]
Responses of Woody plant functional types (PFTs) (PFT1 & PFT2) Significant interaction effects of PFTs and successional stages on four metrics of community structure indicated that the responses of the PFTs to PWD were markedly different at two different stages of forest recovery (Table 4), the initial disturbance period (0 to 4 years after PWD) and the post-disturbance regeneration (4 to 12 years)
We used plant functional types (PFTs) for the first time to explore the responses of entire plant communities to disturbance by an invasive disease (PWD) and their ecological functions during the disturbance period and post-disturbance regeneration
Summary
Pine wilt disease (PWD), caused by the invasive pine wood nematode (PWN, Bursaphelencus xylophilus Nickle), which is endemic to North America, is a severe threat to native pine forests and has been spreading rapidly to other regions throughout the world [1,2,3,4]. In Mainland China, the invasion of the PWN was first recorded in 1982, and PWD has since been aggressively spreading to 186 counties and 15 provinces, infecting over one million hectares of pine forests from 1982 to 2011 [6,7]. Given the rapid spread of PWD and the severe damage that it can cause, it is critical that we study the responses of the plant species in these infested forests to help develop effective management strategies
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have