Abstract

Tissue engineering is considered as a promising approach for the regeneration of biological joint theoretically and thus provides a potential treatment option for advanced osteoarthritis. However, no significant progresses so far have been made in regenerating biological joint. In this study, a biphasic scaffold, which was consisted of polylactic acid-coated polyglycolic acid (PGA/PLA) scaffold and poly-ɛ-caprolactone/hydroxyapatite (PCL/HA) scaffold, was designed and used for regeneration of goat femoral head. The content of PLA and HA was optimized to a proper ratio, thus the scaffolds could achieve appropriate stiffness which was more conducive to articular cartilage and bone regeneration respectively. Furthermore, computer-aided design and manufacturing (CAD/CAM) technology was employed to fabricate the biphasic scaffolds into the desired shape and structure. The biphasic scaffolds with fine cell biocompatibility matched perfectly. Chondrocytes and bone marrow stromal cells (BMSCs) were seeded into the scaffolds for cartilage and bone regeneration respectively. After 10 weeks of implantation in nude mice subcutaneously, the cell–scaffold constructs successfully regenerated goat femoral heads. The regenerated femoral heads presented a precise appearance in shape and size similar to that of native goat femoral heads with a smooth, continuous, avascular, and homogeneous cartilage layer on the surface and stiff bone-like tissue in the microchannels of PCL/HA scaffold. Additionally, histological examination of the regenerated cartilage and bone showed typical histological structures and biophysical properties similar to that of native ones with specific matrix deposition and a well-integrated osteochondral interface. The strategy established in the study provides a promising approach for regenerating a biological joint which could be used to reconstruct the impaired joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.