Abstract

Regenerating optic fibers in goldfish make large-scale errors when they invade tectum and subsequently correct these to generate a projection with moderate retinotopic order by 1 month. The behavior of fibers underlying these extensive rearrangements is not well understood. To clarify this, we have imaged optic fibers in living adult goldfish at 2-4 weeks of regeneration. A small number of neighboring retinal ganglion cells were labeled with microinjections of DiI and imaged in the dorsal tectum with a cooled CCD camera on a fluorescence microscope for 5 to 8 hours. Nearly all fibers were simple unbranched processes and had endings that were highly dynamic showing both growth and retraction. Fibers from dorsal retina that normally innervate ventral tectum were frequently observed in dorsal tectum. These ectopic fibers oscillated more frequently between growth and retraction and retracted more often than ventral optic fibers. Like retinotopic fibers, ectopic fibers exhibited net growth but they showed no apparent directional preference toward their retinotopic position. In contrast, large errors along the anterior-posterior axis corresponding to nasal-temporal retina were rare and there was no differential behavior that distinguished these fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.