Abstract
In this study, mature leachate treatment with combined electrochemical processes was investigated to benefit from the advantages of electrocoagulation (EC) and electrooxidation (EO) simultaneously. First, control experiments were conducted, the most effective anode-cathode combination for EO was selected as Ti/IrO2-Gr, the number of Al electrodes for EC was determined as 3 and the number of Fe electrodes was determined as 5. Optimization of process parameters of the combined system with Al and Fe electrodes was conducted with Box-Behnken design (BBD). With BBD, the effect of the process parameters (initial pH, current density, and reaction time) on the system responses (COD, UV254, and color removal efficiencies) was determined. The suitability of the created model in the study was analyzed statistically and the results of quadratic models were found compatible with experimental studies. The model's capacity for prediction was also confirmed by validation experiments under optimum conditions. By implementing the optimum conditions, COD, UV254, and color removal efficiencies were determined as 71.5 %, 60.2 %, and 93.2 %, respectively for the combined process with Al electrodes and 79.5 %, 68.0 %, and 97.7 %, respectively for the combined process with Fe electrodes. Correlation of actual and predicted data showed that BBD is reliable for optimizing process parameters of combined processes with Al and Fe electrodes. The obtained results showed that combined processes are more effective than hybrid processes, based on both pollutant removal efficiencies and energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.