Abstract

We report a study of refractive index of a wurtzite ZnO single crystal microwire at a temperature range from room temperature to about 400 K using optical cavity modes. The photoluminescence (PL) spectra of the ZnO microwire at different temperatures were performed using a confocal micro-photoluminescence setup. The whispering gallery modes observed in the PL spectra show a redshift both in the ultraviolet and the visible range as the temperature rises. The redshift is used to extract the refractive index of the ZnO microwire. The dispersion relations are deduced at different temperatures, and the results show that the refractive index increases with raising temperature for both transverse electric and transverse magnetic modes. The refractive index increases faster at a shorter wavelength, which is due to the fact that the shorter wavelength is closer to the resonance frequencies of ZnO microwire according to the Lorentz oscillator model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call