Abstract

The refraction of space-time (ST) wave packets offers many fascinating surprises with respect to conventional pulsed beams. In the first paper in this sequence [J. Opt. Soc. Am. A38, 1409 (2021)10.1364/JOSAA.430105], we theoretically described the refraction of all families of ST wave packets at normal and oblique incidence at a planar interface between two nondispersive, homogeneous, isotropic dielectrics. Here, in this second paper in the sequence, we present experimental verification of the refractive phenomena predicted for baseband ST wave packets upon normal incidence on a planar interface. Specifically, we observe group velocity invariance, normal and anomalous refraction, and group velocity inversion leading to group delay cancellation. These phenomena are verified in a set of optical materials with refractive indices ranging from 1.38 to 1.76, including MgF2, fused silica, BK7 glass, and sapphire. We also provide a geometrical representation of the physics associated with anomalous refraction in terms of the dynamics of the spectral support domain for ST wave packets on the surface of the light cone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call