Abstract

The bubble column reactor of 10 and 20L capacity was designed to bio-mitigate 10% CO2 (g) with 90% air utilizing thermophilic bacteria (Bacillus cereus SSLMC2). The maximum biomass yield during the growth phase was obtained as 9.14 and 10.78gL-1 for 10 and 20L capacity, respectively. The maximum removal efficiency for CO2 (g) was obtained as 56% and 85% for the 10 and 20L reactors, respectively. The FT-IR and GC-MS examination of the extracellular and intracellular samples identified value-added products such as carboxylic acid, fatty alcohols, and hydrocarbons produced during the process. The total carbon balance for CO2 utilization in different forms confirmed that B. cereus SSLMC2 utilized 1646.54g C in 10L and 1587g of C in 20L reactor out of 1696.13g of total carbon feed. The techno-economic assessment established that the capital investment required was $286.21 and $289.08 per reactor run of 11days and $0.167 and $0.187 per gram of carbon treated for 10 and 20L reactors, respectively. The possible mechanism pathways for bio-mitigating CO2 (g) by B. cereus SSLMC2 were also presented utilizing the energy reactions. Hence, the work presents the novelty of utilizing thermophilic bacteria and a bubble column bioreactor for CO2 (g) bio-mitigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call