Abstract

Investigation and interpretation of defective motor circuitries in transgenic mice required further basic results from wild-type mice. Therefore, we investigated the lumbar motor reflex pattern in anaesthetised mice using intracellular motoneuronal recording and monosynaptic reflex testing. Thresholds and latencies in mice were similar to those in cats: thresholds for monosynaptic (group I) EPSPs were slightly above 1T (T=threshold for the lowest threshold fibres), around 1.5T for group II EPSPs and above 10T for group III EPSPs; group I EPSPs were maximal with a stimulus strength around 2T, group II EPSPs were maximal with 5–8T; latencies to the group I incoming volley were below 1ms for monosynaptic group I EPSPs, around 3ms for polysynaptic group II EPSPs and above 4ms for polysynaptic group III EPSPs. In contrast to reflex actions in the cat, monosynaptic gastrocnemius-soleus reflexes were facilitated by conditioning stimulation of the peroneal, sural and tibial nerves, i.e. by a variety of different, probably flexor reflex afferents. This facilitation persisted after high lumbar spinalisation indicating an independency to supraspinal influences. Nociceptive muscle afferents facilitated the peroneal monosynaptic reflex while nociceptive cutaneous afferents from the foot sole inhibited the ipsilateral but facilitated the contralateral peroneal reflex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.