Abstract

Intravenous capsaicin elicits the "pulmonary chemoreflex" (apnea, bradycardia, and hypotension) presumably through the stimulation of "pulmonary C-fibers." The present study was designed to ascertain whether tracheobronchial C-fibers play a role in the above reflex response. We compared the effects of capsaicin injected intravenously, administered as an aerosol, and administered topically into the intrathoracic trachea in anesthetized dogs (n = 17) and rats (n = 17). We measured esophageal, subglottic, and arterial pressures together with abdominal muscle electromyogram. Changes in expiratory duration [(TE), measured as the ratio TEtest to TEcontrol, mean +/- SD] due to capsaicin were similar with all three routes of administration in both dogs (intravenous, 7.9 +/- 4.6; aerosol, 5.5 +/- 3.1; topically into intrathoracic trachea, 7.1 +/- 4.8) and rats (intravenous, 22.6 +/- 10.3; aerosol, 11.1 +/- 8.2; topically into intrathoracic trachea, 21.6 +/- 4.6). An increase in laryngeal resistance was a constant finding in the rat, but it was less frequent in the dog. Cardiovascular responses consisting of bradycardia and hypotension occurred with all three routes of administration but had longer delays than the respiratory responses. Capsaicin instillation into the extrathoracic trachea in dogs (n = 7) also induced qualitatively similar cardiorespiratory responses. We conclude that 1) capsaicin-sensitive receptors are accessible from both the pulmonary circulation and the airway lumen and 2) afferents, even in the extrapulmonary portion of the tracheobronchial tree, can play a role in the reflex responses to intraluminal capsaicin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call