Abstract
The cardiovascular responses induced by exercise are initiated by two primary mechanisms: central command and reflexes originating in exercising muscles. Although our understanding of cardiovascular responses to exercise in mice is progressing, a murine model of cardiovascular responses to muscle contraction has not been developed. Therefore, the purpose of this study was to characterize the cardiovascular responses to muscular contraction in anesthetized mice. The results of this study indicate that mice demonstrate significant increases in blood pressure (13.8 +/- 1.9 mmHg) and heart rate (33.5 +/- 11.9 beats/min) to muscle contraction in a contraction-intensity-dependent manner. Mice also demonstrate 23.1 +/- 3.5, 20.9 +/- 4.0, 21.7 +/- 2.6, and 25.8 +/- 3.0 mmHg increases in blood pressure to direct stimulation of tibial, peroneal, sural, and sciatic hindlimb somatic nerves, respectively. Systemic hypoxia (10% O(2)-90% N(2)) elicits increases in blood pressure (11.7 +/- 2.6 mmHg) and heart rate (42.7 +/- 13.9 beats/min), while increasing arterial pressure with phenylephrine decreases heart rate in a dose-dependent manner. The results from this study demonstrate the feasibility of using mice to study neural regulation of cardiovascular function during a variety of autonomic stimuli, including exercise-related drives such as muscle contraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.