Abstract

We determine all maximum weight downsets in the product of two chains, where the weight function is a strictly increasing function of the rank. Many discrete isoperimetric problems can be reduced to the maximum weight downset problem. Our results generalize Lindsay's edge-isoperimetric theorem in two dimensions in several directions. They also imply and strengthen (in several directions) a result of Ahlswede and Katona concerning graphs with maximal number of adjacent pairs of edges. We find all optimal shifted graphs in the Ahlswede-Katona problem. Furthermore, the results of Ahlswede-Katona are extended to posets with a rank increasing and rank constant weight function. Our results also strengthen a special case of a recent result by Keough and Radcliffe concerning graphs with the fewest matchings. All of these results are achieved by applications of a key lemma that we call the reflect-push method. This method is geometric and combinatorial. Most of the literature on edge-isoperimetric inequalities focuses on finding a solution, and there are no general methods for finding all possible solutions. Our results give a general approach for finding all compressed solutions for the above edge-isoperimetric problems.
 By using the Ahlswede-Cai local-global principle, one can conclude that lexicographic solutions are optimal for many cases of higher dimensional isoperimetric problems. With this and our two dimensional results we can prove Lindsay's edge-isoperimetric inequality in any dimension. Furthermore, our results show that lexicographic solutions are the unique solutions for which compression techniques can be applied in this general setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.