Abstract
Reflector-less refractive index (RI) sensors employ simple optical fiber strictures for the accurate detection of RI changes. They operate in absence of any reflective element such as gratings, filters, interferometers while maintaining the form factor of a reflective probe; the RI dependence is encoded in the Rayleigh backscattering signatures, and is interrogated using optical backscatter reflectometry. In this work, we present a new reflector-less fiber-optic sensor based on two-steps: (1) tapering an optical fiber, followed by (2) rapid etching of the fiber. The combination of the two steps allows obtaining significant advantages in terms of manufacturing, making the process simpler and increasing the distribution of the refractive index detection. The sensitivity obtained is up to 110.9 GHz/RIU (refractive index units), with the possibility of detection over a length of 2.1 mm, with 0.035 mm average spatial resolution over distributed RI sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.