Abstract

We present a reflection principle for an arbitrarybiased continuous time random walk (comprising both Markovian and non-Markovian processes) in the presence of areflecting barrier on semi-infinite and finite chains. For biased walks in the presence of a reflecting barrier this principle (which cannot be derived from combinatorics) is completely different from its familiar form in the presence of an absorbing barrier. The result enables us to obtain closed-form solutions for the Laplace transform of the conditional probability for biased walks on finite chains for all three combinations of absorbing and reflecting barriers at the two ends. An important application of these solutions is the calculation of various first-passage-time and escape-time distributions. We obtain exact results for the characteristic functions of various kinds of escape time distributions for biased random walks on finite chains. For processes governed by a long-tailed event-time distribution we show that the mean time of escape from bounded regions diverges even in the presence of a bias—suggesting, in a sense, the absence of true long-range diffusion in such “frozen” processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.