Abstract
AbstractWe develop a fast method for finding all high-degree vertices of a connected graph with a power-law degree sequence. The method uses a biased random walk, where the bias is a function of the power law c of the degree sequence.Let G(t) be a t-vertex graph, with degree sequence power law c ≥ 3 generated by a generalized preferential attachment process that adds m edges at each step. Let Sa be the set of all vertices of degree at least ta in G(t). We analyze a biased random walk that makes transitions along undirected edges {x, y} with probabilities proportional to (d(x)d(y))b, where d(x) is the degree of vertex x and b > 0 is a constant parameter. With parameter b = (c − 1)(c − 2)/(2c − 3), the random walk discovers the set Sa completely in steps with high probability. The error parameter e depends on c, a, and m.The cover time of the entire graph G(t) by the biased walk is . Thus the expected time to discover all vertices by the biased walk is not much higher than the Θ(tlog t) cover time of a simp...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.