Abstract

This paper presents a study of the propagation of surface acoustic waves in a single and periodic array of metal strip overlays on the surface of layered substrates. Responses of reflected and transmitted surface acoustic waves due to various geometric design parameters of the grating arrays are investigated. An eight-dimensional matrix formulation based on Stroh formalism is adopted to analyze wave propagation in piezoelectric layered media. The dispersion curves for aluminum-zinc oxide films on glass substrates are determined using the surface impedance tensor method. A transfer matrix in terms of the state vectors in cooperation with continuity conditions on the edges of the grating array is used to determine the reflectivity and transmittance of the horizontally propagating surface acoustic waves. The analysis and simulation results show that when the surface acoustic wave is obliquely incident on an array of gratings and the strip width is equal to the gap between strips, the constructive interference of the reflected wave occurs at odd multiples of the strip width to a wavelength ratio of 0.25. When the strip width is unequal to the gap, the constructive interference of the reflected wave is an odd multiple of the strip width to a wavelength ratio of 0.5. An increase in the number of strips concentrates the reflectivity's extreme frequencies, and an increase in the strip height increases the bandwidth of the extreme frequencies. Both of these increases strengthen the reflected wave's constructive interferences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call