Abstract

We compare the results of ab initio calculations with measured reflection anisotropy spectra and show that strongly bound surface-state excitons occur on the clean diamond (100) surface. These excitons are found to have a binding energy close to 1 eV, the strongest ever observed at a semiconductor surface. Important electron-hole interaction effects on the line shape of the optical transitions above the surface-state gap are also found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.