Abstract

The equilibrium partitioning sediment benchmarks (ESBs) derived by the US Environmental Protection Agency (USEPA) in 2005 provide a mechanistic framework for understanding metal bioavailability in sediments by considering equilibrium partitioning (EqP) theory, which predicts that metal bioavailability in sediments is determined largely by partitioning to sediment particles. Factors that favor the partitioning of metals to sediment particles, such as the presence of acid volatile sulfide (AVS) and sediment organic matter, reduce metal bioavailability to benthic organisms. Because ESBs link metal bioavailability to partitioning to particles, they also predict that measuring metals in porewater can lead to a more accurate assessment of bioavailability and toxicity to benthic organisms. At the time of their development, sediment ESBs based on the analysis of porewater metal concentrations were limited to comparison with hardness-dependent metals criteria for the calculation of interstitial water benchmark units (IWBUs). However, the multimetal biotic ligand model (mBLM) provides a more comprehensive assessment of porewater metal concentrations, because it considers factors in addition to hardness, such as pH and dissolved organic carbon, and allows for interactions between metals. To evaluate the utility of the various sediment and porewater ESBs, four Hyalella azteca bioassay studies were identified that included sediment and porewater measurements of metals and porewater bioavailability parameters. Evaluations of excess simultaneously extracted metals, IWBUs, and mBLM toxic units (TUs) were compared among the bioassay studies. For porewater, IWBUs and mBLM TUs were calculated using porewater metal concentrations from samples collected using centrifugation and peepers. The percentage of correct predictions of toxicity was calculated for each benchmark comparison. The mBLM-based assessment using peeper data provided the most accurate predictions for the greatest number of samples among the evaluation methods considered. This evaluation demonstrates the value of porewater-based evaluations in conjunction with sediment chemistry in understanding toxicity observed in bioassay studies. Integr Environ Assess Manag 2022;18:1335-1347. © 2021 SETAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.