Abstract

AbstractTo maximize the contribution of the Cross-track Infrared Sounder (CrIS) measurements to the global weather forecasting, we attempt to choose the CrIS channels to be assimilated in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS). From pre-selected 431 CrIS channels, 207 channels are newly selected using a one-dimensional variational (1D-Var) approach where the channel score index (CSI) is used as a figure of merit. Newly selected 207 channels consist of 85 temperature, 49 water vapor, and 73 surface channels, respectively. In addition, to examine how the channels are selected if the forecast error covariance is differently defined depending on the latitudinal regions (i.e., Northern and Southern Hemispheres, and tropics), the same selection process is carried out repeatedly using three regional forecast error covariances. From three regional channel sets, two-channel sets are made for the global data assimilation. One channel set is made with 134 channels overlapped between three regional channel sets. Another channel set consists of 277 channels that is the sum of three regional channel sets. In the global trial experiments, the global CrIS 207 channels have a significant positive forecast impact in terms of the improvement of GFS global forecasting, as compared with the forecasts with the operational 100 channels as well as the overlapped 134 and the union 277 channel sets. The improved forecast is mainly due to the additional temperature/water vapor channels of the global CrIS 207 channels that are selected optimally based on the global forecast error of operational GFS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call