Abstract

<p>Significant progress has been made within the last couple of years towards developing online coupled systems aimed at providing more accurate descriptions of atmospheric chemistry processes to improve performance of global aerosol and air quality forecasts. Operating within the U.S. National Weather Service (NWS) research-to-operation initiative to implement the fully-coupled Next Generation Global Prediction System (NGGPS), cooperative development efforts have delivered two integrated online global prediction systems for aerosols (GEFS-Aerosols) and air quality (FV3GFS-AQM). These systems include recent advances in aerosol convective transport and wet deposition processes introduced into the SAS scheme of the National Center for Environmental Prediction’s (NCEP) latest Global Forecast System (GFS) based on the Finite-Volume cubed-sphere dynamical core (FV3). GEFS-Aerosols is slated to become the new control member of the NWS Global Ensemble Forecast System (GEFS). The model features an online-coupled version of the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model with a biomass-burning, plume-rise model and recent advances from NOAA Earth System Research Laboratory (ESRL), along with a state-of-the-art FENGSHA dust scheme from NOAA Air Resource Laboratory (ARL). FV3GFS-AQM incorporates a coupled, single-column adaptation of the U.S. Environmental Protection Agency’s (EPA) Community Multiscale Air Quality (CMAQ) model to improve NOAA’s current National Air Quality Forecast Capability (NAQFC). Both coupled systems’ design and development benefited from the use of the National Unified Operational Prediction Capability (NUOPC) Layer, which provided a common model architecture for interoperable, coupled model components within the framework of NOAA’s Environmental Modeling System (NEMS). Results from each of the described coupled systems will be discussed.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.