Abstract

Animals need to remember the locations of nourishing and toxic food sources for survival, a fact that necessitates a mechanism for associating taste experiences with particular places. We have previously identified such responses within hippocampal place cells [1], the activity of which is thought to aid memory-guided behavior by forming a mental map of an animal's environment that can be reshaped through experience [2-7]. It remains unknown, however, whether taste responsiveness is intrinsic to asubset of place cells or emerges as a result of experiencethat reorganizes spatial maps. Here, we recorded from neurons in the dorsal CA1 region of rats running for palatable tastes delivered via intra-oral cannulae at specific locations on a linear track. We identified a subset of taste-responsive cells that, even prior to taste exposure, had larger place fields than non-taste-responsive cells overlapping with stimulus delivery zones. Taste-responsive cells' place fields then contracted as a result of taste experience, leading to a stronger representation of stimulus delivery zones on the track. Taste-responsive units exhibited increased sharp-wave ripple co-activation during the taste delivery session and subsequent rest periods, which correlated with the degree of place field contraction. Our results reveal that novel taste experience evokes responses within a preconfigured network of taste-responsive hippocampal place cells with large fields, whose spatial representations are refined by sensory experience to signal areas of behavioral salience. This represents a possible mechanism by which animals identify and remember locations where ecologically relevant stimuli are found within their environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call