Abstract

Many techniques have been developed to cancel the ventricular interference in atrial electrograms (AEG) during atrial fibrillation. In particular, average beat subtraction (ABS) and interpolation are among those mostly adopted. However, ABS usually leaves high power residues and discontinuity at the borders, whereas interpolation totally substitutes the residual activity with a forecasting that might fail at the center of the cancellation segment. In this study, we proposed a new algorithm to refine the ventricular estimate provided by ABS, in such a way that the residual activity should likely be distributed as the local atrial activity. Briefly, the local atrial activity is first modeled with an autoregressive (AR) process, then the estimate is refined by maximizing the log likelihood of the atrial residual activity according to the fitted AR model. We tested the new algorithm on both synthetic and real AEGs, and compared the performance with other four algorithms (two variants of ABS, interpolation and zero substitution). On synthetic data, our algorithm outperformed all the others in terms of average root mean square error (0.043 vs 0.046 for interpolation; p <; 0.05). On real data, our methodology outperformed two variants of ABS (p <; 0.05) and performed similarly to interpolation when considering the high power residues left (both <; 5%), and the log likelihood with the fitted AR model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.