Abstract

In view of the numerous clock domain crossings found in modern systems-on-chip and multicore architectures precise metastability characterization is a fundamental task. We propose a conceptually novel approach for the experimental assessment of upset rate over resolution time that is usually employed to extract the relevant characteristics. Our method is based on connecting a time-to-digital converter to the output of the flip flop under test, rather than using a phase shifted clock, as conventionally done. We present the details of an FPGA implementation of our approach and show its feasibility through an experimental evaluation, whose results favorably match those obtained by the conventional method. The benefits of the novel scheme are the ability to perform a calibration for the delay steps, a speed-up of the measurement process, and the availability of a more comprehensive and ordered measurement data set. Especially the latter can be of crucial importance when (even multiple) glitches or oscillation are suspected to result from metastability, or when the temporal distribution of upsets matters (bursts of upsets, e.g.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.