Abstract

Instantaneous speed (IS) is of great significance of fault diagnosis and condition monitoring of the high speed spindle. In this paper, we propose a novel zoom synchrosqueezing transform (ZST) for IS estimation of the high speed spindle. Due to the limitation of the Heisenberg uncertainty principle, the conventional time-frequency analysis (TFA) methods cannot provide both good time and frequency resolution at the whole frequency region. Moreover, in most cases, the interested frequency component of a signal only locates in a narrow frequency region, so there is no need to analyze the signal in the whole frequency region. Different from conventional TFA methods, the proposed method arms to analyze the signal in a specific frequency region with both excellent time and frequency resolution so as to obtain accurate instantaneous frequency (IF) estimation results. The proposed ZST is an improvement of the synchrosqueezing wavelet transform (SWT) and consists of two steps, i.e., the frequency-shift operation and the partial zoom synchrosqueezing operation. The frequency-shift operation is to shift the interested frequency component from the lower frequency region to the higher frequency to obtain better time resolution. The partial zoom synchrosqueezing operation is conducted to analyze the shifted signal with excellent frequency resolution in a considered frequency region. Compared with SWT, the proposed method can provide satisfactory energy concentrated time-frequency representation (TFR) and accurate IF estimation results. Additionally, an application of the proposed ZST to the IS fluctuation estimation of a motorized spindle was conducted, and the result showed that the IS estimated by the proposed ZST can be used to detect the quality of the finished workpiece surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call