Abstract

On 21 May 2021, an Mw 6.1 earthquake occurred in Yangbi County, Dali Bai Autonomous Prefecture, Yunnan Province, with the epicenter located in an unmapped blind fault approximately 7 km west of the Weixi-Qiaohou fault (WQF) on the southeastern margin of the Qinghai–Tibetan Plateau. While numerous studies have been conducted to map the coseismic slip distribution by using the Global Navigation Satellite System (GNSS), Interferometric Synthetic Aperture Radar (InSAR) and seismic data as well as their combinations, the understanding of deformation characteristics during the postseismic stage remains limited, mostly due to the long revisiting time interval and large uncertainty of most SAR satellites. In this study, we refined coseismic slip and afterslip distributions with nonlinear inversions for both fault geometry and relaxation time. First, we determined the fault geometry and coseismic slip distribution of this earthquake by joint inversion for coseismic offsets in the line-of-sight (LOS) direction of both Sentinel-1A/B ascending and descending track images and GNSS data. Then, the descending track time series of Sentinel-1 were further fitted using nonlinear least squares to extract the coseismic and postseismic deformations. Finally, we obtained the refined coseismic slip and afterslip distributions and investigated the spatiotemporal evolution of fault slip by comparing the afterslip with aftershocks. The refined coseismic moment magnitude, which was of Mw 6.05, was smaller than Mw 6.1 or larger, which was inferred from our joint inversion and previous studies, indicating a significant reduction in early postseismic deformation. In contrast, the afterslip following the mainshock lasted for about six months and was equivalent to a moment release of an Mw 5.8 earthquake. These findings not only offer a novel approach to extracting postseismic deformation from noisy InSAR time series but also provide valuable insights into fault slip mechanisms associated with the Yangbi earthquake, enhancing our understanding of seismic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.