Abstract

Many Arabidopsis thaliana genes have been reported to affect plant cell size by regulating the level of endoreduplication, which is a modified cell cycle. However, the role of endoreduplication on the altered cell size in these reports must be reconsidered based on a number of findings. First, not all plant species exhibit endoreduplication, which indicates that endoreduplication-driven cell size regulation is not universal among plants. Second, while ploidy level and cell size are correlated in the epidermal pavement cells of Arabidopsis leaves, the size of mesophyll cells appears to be comparatively uniform regardless of whether there is heterogeneity in the ploidy level. Third, changes in the cell sizes reported in mutant and transgenic Arabidopsis seem to be too large to be solely the result of altered endoreduplication level. Fourth, compensated cell enlargement, which is triggered by a severe decrease in cell proliferation in Arabidopsis leaves, is usually independent of altered endoreduplication. We re-examined the role of endoreduplication on cell-size regulation in Arabidopsis, mainly in leaves, and revealed biases in the previous studies. This paper provides an overview of the work carried out in the past decade, and presents rationale to correct the previous assumptions. Based on the considerations provided in this report, a re-examination of previous reports regarding the roles of mutations and/or transgenes in the regulation of cell size is recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.