Abstract

Investigations of the phase diagram of biaxial liquid-crystal systems through analyses of general Hamiltonian models within the simplifications of mean-field theory (MFT), as well as by computer simulations based on microscopic models, are directed toward an appreciation of the role of the underlying molecular-level interactions to facilitate its spontaneous condensation into a nematic phase with biaxial symmetry. Continuing experimental challenges in realizing such a system unambiguously, despite encouraging predictions from MFT, for example, are requiring more versatile simulational methodologies capable of providing insights into possible hindering barriers within the system, typically gleaned through its free-energy dependences on relevant observables as the system is driven through the transitions. The recent paper from this group [Kamala Latha et al., Phys. Rev. E 89, 050501(R) (2014)], summarizing the outcome of detailed Monte Carlo simulations carried out employing an entropic sampling technique, suggested a qualitative modification of the MFT phase diagram as the Hamiltonian is asymptotically driven toward the so-called partly repulsive regions. It was argued that the degree of (cross) coupling between the uniaxial and biaxial tensor components of neighboring molecules plays a crucial role in facilitating a ready condensation of the biaxial phase, suggesting that this could be a plausible factor in explaining the experimental difficulties. In this paper, we elaborate this point further, providing additional evidence from curious variations of free-energy profiles with respect to the relevant orientational order parameters, at different temperatures bracketing the phase transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.