Abstract

Rats were implanted with an electrode-microdialysis assembly in order to test the hypothesis that the reward signal elicited by medial forebrain bundle stimulation is relayed by the meso-accumbens dopamine cells. We first obtained the strength-duration function of self-stimulation, that is, a family of behaviorally equivalent stimuli (pulse intensity and pulse duration pairs yielding a constant self-stimulation rate). We then collected the self-stimulation-bound intra-accumbens dopamine for several pairs of intensity and duration, selected from within the strength-duration function. Our reasoning was that if the reward signal travels along the meso-accumbens dopaminergic neurons, the release of dopamine should not depend on the stimulus parameters because behaviorally equivalent stimuli should produce a constant output in all neural stages carrying the reward signal. The results showed that short duration/high intensity pulses induced considerably larger increases in dopamine levels than long duration/low intensity pulses, despite the fact that these stimuli maintained a constant self-stimulation rate. Among the interpretations envisaged, the most parsimonious one seems to be that the MFB rewarding signal is not relayed exclusively by meso-accumbens dopaminergic cells and that the latter may play a permissive-facilitator role at some transmission stage of the reward signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.