Abstract

Rats were implanted with an electrode-microdialysis assembly in order to test the hypothesis that the reward signal elicited by medial forebrain bundle stimulation is relayed by the meso-accumbens dopamine cells. We first obtained the strength-duration function of selfstimulation, that is, a family of behaviorally equivalent stimuli (pulse intensity and pulse duration pairs yielding a constant self-stimulation rate). We then collected the self-stimulation-bound intra-accumbens dopamine for several pairs of intensity and duration, selected from within the strength-duration function. Our reasoning was that if the reward signal travels along the meso-accumbens dopaminergic neurons, the release of dopamine should not depend on the stimulus parameters because behaviorally equivalent stimuli should produce a constant output in all neural stages carrying the reward signal. The results showed that short duration/high intensity pulses induced considerably larger increases in dopamine levels than long duration/low intensity pulses, despite the fact that these stimuli maintained a constant self-stimulation rate. Among the interpretations envisaged, the most parsimonious one seems to be that the MFB rewarding signal is not relayed exclusively by mesoaccumbens dopaminergic cells and that the latter may play a permissive-facilitator role at some transmission stage of the reward signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.