Abstract

AbstractKnowledge of design waves with long return periods forms an essential input to many engineering applications, including structural design and analysis. Such extreme or long-term waves are conventionally evaluated using observed or hindcast historical wave data. Globally, waves are expected to undergo future changes in magnitude and behavior as a result of climate change induced by global warming. Considering future climate change, this study attempts to reevaluate significant wave height (Hs) as well as average spectral wave period (Tz) with a return period of 100 years for a series of locations along the western Indian coastline. Historical waves are simulated using a numerical wave model forced by wind data extracted from the archives of the National Center for Environmental Prediction and the National Center for Atmospheric Research, while future wave data are generated by a state-of-the-art Canadian general circulation model. A statistical extreme value analysis of past and projected wave data carried out with the help of the generalized Pareto distribution showed an increase in 100-year Hs and Tz along the Indian coastline, pointing out the necessity to reconsider the safety of offshore structures in the light of global warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.