Abstract

Abstract Genetic algorithms have been shown to be highly effective for optimization problems in various disciplines, and binary coding is generally adopted as it is straightforward to implement and lends itself to problems with discrete-valued decision variables. However, a difficulty associated with binary coding is the existence of redundant codes that do not correspond to any element in the finite discrete set that the encoded parameter belongs to. A common technique used to address redundant binary codes is to discard the chromosomes in which they occur. Effective alternatives to the outright removal of redundant codes are lacking in the literature. This article presents illustrative examples based on the problem of optimizing the design of water distribution networks. Two benchmark networks in the literature and two different multi-objective design optimization models were considered. Different fixed mapping schemes gave significantly different solutions in the search space. The main inference from the results is that mapping schemes that improved diversity in the population of solutions achieved better results, which may pave the way for the development of practical and effective mapping schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.