Abstract

Two-sided unitary transformations of arbitrary 2/spl times/2 matrices are needed in parallel algorithms based on Jacobi-like methods for eigenvalue and singular value decompositions of complex matrices. This paper presents a two-sided unitary transformation structured to facilitate the integrated evaluation of parameters and application of the typically required transformations using only the primitives afforded by CORDIC; thus enabling significant speedup in the computation of these transformations on special-purpose processor array architectures implementing Jacobi-like algorithms. We discuss implementation in (nonredundant) CORDIC to motivate and lead up to implementation in the redundant and on-line enhancements to CORDIC. Both variable and constant scale factor redundant (CFR) CORDIC approaches are detailed and it is shown that the transformations may be computed in 10n+/spl delta/ time, where n is the data precision in bits and /spl delta/ is a constant accounting for accumulated on-line delays. A more area-intensive approach using a novel on-line CORDIC encoded angle summation/difference scheme reduces computation time to 6n+/spl delta/. The area/time complexities involved in the various approaches are detailed. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.