Abstract

Arsenic-contaminated red mud (As-RM) is a hazardous waste with limited recycling approaches. Generally, through reductive roasting and magnetic separation, RM could be transformed into Fe-rich concentrate for Fe resource recovery. However, due to the poor thermostabilization of As species, reductive roasting of As-RM would cause severe As volatilization pollution together with high As leaching risks from heated residue. Herein, a novel johnbaumite-based As thermostabilization strategy is developed for clean Fe resources recycling from As-RM. We found that in the presence of Ca(OH)2, the As species in As-RM could be immobilized as thermostable and insoluble johnbaumite (Ca5(AsO4)3OH) at 900 °C, effectively enhancing the As thermostability and insolubility. Introducing 1.5% Ca(OH)2 into As-RM suppressed the As volatilization ratio from 60.3% to 15.7% during reductive roasting. Meanwhile, the As leaching concentration of the reduced residue was reduced to < 100 µg/L, thus satisfying the Japanese wastewater discharge standard. A concentrate with approximately 67.5% total iron grade was obtained from As-RM through this clean reductive roasting and magnetic separation. Overall, the approach introduced in this work effectively reduces the As diffusion pollution deriving from As-RM thermal reduction, which could contribute to hazardous As-RM reutilization, clean Fe resources recovery, and As pollution mitigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.